Ein neuer Zugang zu 1,2- und 1,3-Diborol[☆]

Gernot Gabbert, Hans Pritzkow, Michael Kaschke und Walter Siebert*

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany

Eingegangen am 9. Februar 1994

Key Words: 1,2-Diboroles, 2,5-dihydro- / 1,3-Diboroles, 2,3-dihydro- / Cobalt complexes

A New Approach to 1,2- and 1,3-Diborole*

Diaminoborylation of 1,3-dilithiopropenes leads to the (Z)-1,3-bis(diaminoboryl)propenes **4a**, **b**, which are transformed by an amine/chlorine exchange to the (Z)-1,3-bis(aminochloroboryl)propenes **5a**, **b**. These react with sodium to yield the 2,5-dihydro-1*H*-1,2-diboroles **2c**, **d**, whereas the reaction with potassium leads to the 2,3-dihydro-1*H*-1,3-diboroles **6a**,

Die Borylierung von Carbanionen ist eine Standardreaktion^[1] zur Knüpfung von Bor-Kohlenstoff-o-Bindungen, die mit Dicarbanionen einen einfachen Zugang zu Borheterocyclen ermöglicht^[2]. So gelingt die Umsetzung von $CH_2 = C(CH_2Li)_2$ mit $ClB(NiPr_2)_2$ zu $CH_2 = C[CH_2B_2]_2$ (NiPr2)2]2, das nach Amin/Chlor-Austausch durch Enthalogenierung das 4-Methylen-1,2-diborolan-Derivat 1a ergibt^[3]. Durch Protonierung des roten Lithiumsalzes Li₂(1a - 2H) konnte erstmals das 2,5-Dihydro-1H-1,2-diborol-Derivat 2a ($R^1 = H$, $R^2 = Me$) erhalten werden. Sowohl 1a als auch $1b^{[4]}$, dessen Umlagerung zu 2b ($R^1 = Me, R^2 =$ H) führen sollte, reagieren mit (C5H5)Co(C2H4)2 zu den roten Komplexen 3a, b, in denen durch metallinduzierte Wanderung von zwei Wasserstoffatomen der n⁴-komplexierte 4-Boryl-1-borabutadien-Ligand 2' vorliegt^[4]. Im folgenden berichten wir über die direkte Darstellung der isomeren 1,2und 1,3-Diborole 2c, d und 6a, b.

Ergebnisse und Diskussion

Synthesen von 2c, d und 6a, b

Durch doppelte Borylierung von 1,3-Dilithiopropen^[5] mit zwei Äquivalenten Chlorbis(diisopropylamino)boran ist das 1,3-Bis(diaminoboryl)propen **4a** zugänglich. Substitution je einer Aminogruppe durch die Chlorofunktion führt zum 1,3-Bis(aminochlorboryl)propen **5a**, das von Natrium **b** by rearrangement of the C_3B_2 skeleton. The constitutions of the heterocycles **2c**, **d** and **6a**, **b** are established by X-ray structure analyses. Reaction of the 1,2-diboroles **2c**, **d** with $(C_5H_5)Co(C_2H_4)_2$ leads to the red (1-borabutadiene)cobalt complexes **3c**, **d**. In **3c** a signatropic rearrangement is studied by NMR spectroscopy.

in siedendem Toluol zu 1,2-Bis(diisopropylamino)-2,5-dihydro-1H-1,2-diborol (**2c**) enthalogeniert wird.

Bei der reduktiven Enthalogenierung mit Kalium in siedendem Hexan entsteht überraschenderweise 1,3-Bis(diisopropylamino)-2,3-dihydro-1*H*-1,3-diborol (**6a**), in dem erstmals kein Alkyl-Substituent am 2,3-Dihydro-1,3-diborol-Gerüst^[6] vorliegt. Die Konstitution der Vorstufen **4a** und **5a** sowie der Heterocyclen **2c** und **6a** folgt aus den spektroskopischen Daten und ist für **2c** und **6a** durch Kristallstrukturanalysen abgesichert.

Um weitere Informationen über die unerwartete Bildung des 1,3-Diborols **6a** zu erhalten, wurde ausgehend von 1,3-Dilithio-3-phenylpropen durch doppelte Diaminoborylierung **4b** hergestellt. Durch Amin/Chlor-Austausch entsteht **5b**, dessen Umsetzung mit Natrium in Toluol 1,2-Bis(diisopropylamino)-3-phenyl-2,5-dihydro-1*H*-1,2-diborol (**2d**) ergibt. Kalium reagiert mit **5b** unter Umlagerung zu 1,3-Bis-(diisopropylamino)-2,3-dihydro-2-phenyl-1*H*-1,3-diborol (**6b**). Die Phenyl-Gruppe wird ausschließlich in 2-Stellung gefunden. Die Konstitution von **4b** und **5b** sowie von **2d** und **6b** ergibt sich aus den spektroskopischen Daten, sie wird für die Heterocyclen durch Kristallstrukturanalysen bestätigt.

Chem. Ber. 1994, 127, 1363–1368 © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994 0009–2940/94/0808–1363 \$ 10.00+.25/0

A 1363 Um die Möglichkeit der Entstehung des 1,3-Isomeren durch Umlagerung aus dem 1,2-Isomeren zu überprüfen, wurde das 1,2-Diborol **2c** unter den Synthesebedingungen des 1,3-Diborols umgesetzt. Dabei ließ sich keine Bildung des 1,3-Isomeren nachweisen. Ebenso war weder thermisch noch photochemisch eine Umlagerung in das 1,3-Diborol **6a** zu beobachten. Offensichtlich handelt es sich bei der Bildung der beiden Isomeren um zwei diskrete Reaktionswege. Für den Grundkörper von **2** und **6** ($\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{H}$, *i*Pr durch H ersetzt) wurden Ab-initio-Rechnungen mit Doppel-Zeta-Qualität^[8] durchgeführt. Nach Geometrieoptimierung erweist sich das 1,3-Isomere **6** um etwa 85 kJ/mol stabiler als **2**.

Komplexe 3c,d aus 2c,d und (C₅H₅)Co(C₂H₄)₂

Die beiden 1,2-Diborol-Derivate 2c und 2d reagieren mit einer äquimolaren Menge $(C_5H_5)Co(C_2H_4)_2$ in Hexan zu roten Lösungen, deren chromatographische Aufarbeitung an desaktiviertem Al₂O₃ mit Hexan bei -78°C die roten Komplexe 3c und 3d ergibt.

3c zeigt eine gute thermische Stabilität (sublimierbar im Vakuum bei 120°C). Die Konstitution von **3c**, **d** folgt aus den spektroskopischen Daten und wird für **3c** durch eine Kristallstrukturanalyse bestätigt. Analoge Ringöffnungen wurden schon bei der Komplexierung der Methylen-1,2-diborolane **1a**, **b** unter Bildung von **3a**, **b** gefunden^[4].

Spektroskopische Untersuchungen von 2c, d, 6a, b und 3c, d

¹H-NMR-spektroskopische Untersuchungen an 2c und 2d zeigen keine Symmetrie für die Heterocyclen. Die Protonen des substituierten Allyl-Systems werden bei den erwarteten Verschiebungen mit entsprechenden Kopplungsmustern gefunden. Die Isopropyl-Gruppen der Amino-Substituenten sind magnetisch inäquivalent, was durch die ¹³C{¹H}-NMR-Spektren bestätigt wird. ¹¹B-NMR-spektroskopische Untersuchungen zeigen das Vorliegen einer 1,2-Diamino-1,2-dialkyldiboran(4)-Einheit. In den Massenspektren ergeben die Heterocyclen 2c und 2d jeweils die Molekülpeaks als Signale größter Massen. Die hohe Symmetrie der 1,3-Diborol-Derivate 6a und 6b spiegelt sich in den ¹H-NMR-Spektren wider. Infolge des partiellen Doppelbindungscharakters der B-N-Bindung tritt magnetische Inäquivalenz der Isopropyl-Gruppen auf, so daß im Falle von 6a sowohl zwei Signale für die Methin- als auch für die Methyl-Protonen beobachtet werden. Dies deutet eine $C_{2\nu}$ -Symmetrie an. Die C_s-Symmetrie von 6b mit der Spiegelebene durch den Phenylring, C2 und die Mitte der C4–C5-Bindung folgt aus dem ¹H-NMR-Spektrum. Die Resonanz zweier Methyl-Reste ist im Vergleich zu den restlichen sechs Methyl-Gruppen der Isopropyl-Substituenten um ca. 1 ppm nach höherem Feld verschoben. Dies führen wir auf den entschirmenden Effekt des Ringstroms der Phenyl-Gruppe zurück. Wie die Kristallstrukturanalyse zeigt, liegen in festem Zustand je zwei Methylgruppen über und unter der Ringebene (Abstand C_{Methyl}-Ringebene ca. 3.5 Å). Die ¹³C{¹H}-NMR Spektren bestätigen die Aussagen der ¹H-NMR-Spektren. EI-MS-Untersuchungen von **6a** und **6b** ergeben als größte Masse jeweils die Molekül-Ionen.

Die NMR-Spektren des Cobaltkomplexes 3c zeigen C_s -Symmetrie, die durch eine schnelle Fluktuation des Heterobutadien-Systems erklärt wird.

Das C3-Proton wird aufgrund der Kopplung mit den beiden innerhalb der NMR-Zeitskala äquivalenten Protonen an C2 und C4 als Triplett beobachtet. Die Protonen an C2 and C4 ergeben durch Kopplung sowohl mit 3-H als auch dem Bor-Wasserstoff ein Dublett vom Dublett. Die Kopplungskonstante ${}^{3}J_{\text{HCBH}} = 3$ Hz ist ungefährt halb so groß wie eine normale ${}^{3}J_{\text{HCBH}}$ -Kopplung. Die Resonanz für das Bor-Wasserstoffatom wird nicht gefunden. Die Signale für die Diisopropyl-Protonen zeigen die Äquivalenz der beiden Amino-Substituenten an. Bei tiefen Temperaturen (bis 200 K) tritt kein Einfrieren der Fluktuation ein. ${}^{13}C{}^{1}H{}$ -NMR-spektroskopische Untersuchungen ergeben analoge Befunde. Das 11 B-NMR-Spektrum zeigt nur ein Singulett bei $\delta = 38$.

Aufgrund der gegenüber **3c** erniedrigten Symmetrie beobachtet man für die Methyl-Protonen der Isopropylamino-Substituenten von **3d** zwei Dubletts sowie zwei Septetts für die Methin-Protonen. Das Proton an C3 des Heterobutadiens wird durch Kopplung mit 4-H als Dublett bei tiefem Feld gefunden, das Proton 4-H erscheint aufgrund der Kopplung sowohl mit 3-H als auch mit dem Bor-Wasserstoffatom als Pseudotriplett, wobei sich ${}^{3}J_{\text{HCBH}} = 6$ Hz in der Größenordnung einer normalen ${}^{3}J_{\text{HCBH}}$ -Kopplungskonstanten bewegt. Wir gehen deshalb davon aus, daß das H-Atom bei 25°C an B5 lokalisiert ist und es sich somit um ein fixiertes Heterobutadien-System handelt.

Im ¹¹B-NMR-Spektrum beobachtet man zwei Signale bei $\delta = 56$ und 32 im Verhältnis 1:1. Das Signal bei tiefem Feld ordnen wir der BH(NR₂)-Gruppierung, das bei hohem Feld dem komplexierten Boratom zu. Beim Erwärmen auf 100°C geht die Intensität der Signale zurück, und es entsteht ein neues Signal bei $\delta = 39$. Dies führen wir auf einen in der NMR-Zeitskala raschen Austausch des H-Atoms über eine B-H-B-Brücke zurück.

Analoge Verhältnisse treten bei dem Komplex 3b ($R^1 = Me, R^2 = H$) auf, der ebenfalls zwei ¹¹B-NMR-Signale zeigt

(δ = 24 und 46), während sich der Komplex 3a (R¹ = H, R² = Me) analog 3c verhält^[5].

Kristallstrukturanalysen von 2c, d, 6a, b und 3c

Die Kristallstrukturanalyse von 2d (Abb. 1) ist die erste eines freien 1,2-Diborols. Der Heterocyclus nimmt die Envelope-Form ein und ist entlang der Linie B1–C3 um 33° gefaltet. Der Abstand B1–B2 liegt im Bereich für eine Einfachbindung und der Abstand C4–C5 entspricht einer lokalisierten Doppelbindung. Der B1–C5-Abstand ist wegen der benachbarten Doppelbindung deutlich kürzer als B2–C3.

Abb. 1. Molekülstruktur von **2d**. Ausgewählte Abstände [Å] und Winkel [°]: B1-B2 1.728(4), B1-C5 1.558(4), B1-N1 1.404(3), B2-N2 1.395(3), B2-C3 1.630(4), C3-C4 1.515(4), C4-C5 1.333(4); C5-B1-B2 99.0(2), B1-B2-C3 101.6(2), B2-C3-C4 99.7(2), C3-C4-C5 118.1(3), C4-C5-B1 110.8(3)

In **2c** ist der Ring fehlgeordnet. Die Molekülstruktur entsteht durch Überlagerung zweier Moleküle mit der Doppelbindung zwischen C3 und C4 bzw. C4 und C5. Dadurch ergibt sich C_2 -Symmetrie und eine Twist-Form für den Ring. Die Abstände und Winkel entsprechen den gemittelten Werten in **2d**.

Die Molekülstrukturen von **6a** und **6b** (Abb. 2) zeigen eine gute Übereinstimmung für den 1,3-Diborolring, der $C_{2\nu}$ -Symmetrie besitzt. Die Ringatome, die Stickstoffatome und die Methinkohlenstoffatome der Isopropylgruppen liegen in einer Ebene. Die B–C-Abstände in Nachbarschaft zur Doppelbindung sind wieder etwas kürzer als die an C2. Ein Vergleich mit komplexierten Diborol- und Diborolylliganden zeigt wie zu erwarten eine Aufweitung der C–C-Doppelbindung im Komplex und für die Diborolylliganden eine Verkürzung der C2–B-Abstände. Im phenylsubstituierten **6b** sind die Abstände C2–B geringfügig größer als

Abb. 2. Molekülstruktur von **6b**. Ausgewählte Abstände [Å] und Winkel [°]: B1-C2 1.616(3), C2-B3 1.611(4), B3-C4 1.574(4), C4-C5 1.344(4), C5-B1 1.570(4); C5-B1-C2 107.5(2), B1-C2-B3 101.8(2), C2-B3-C4 107.4(2), B3-C4-C5 111.7(2), C4-C5-B1 111.6(2)

Abb. 3. Molekülstruktur von **3c**. Ausgewählte Abstände [Å] und Winkel [°]: Co1-B1 2.010(6), Co1-C2 2.024(6), Co1-C3 1.978(7), Co1-C4 2.073(6), B1-C2 1.472(9), C2-C3 1.422(8), C3-C4 1.411(8), C4-B5 1.508(9); B1-C2-C3 119.0(6), C2-C3-C4 119.7(6), C3-C4-B5 124.8(6)

in **6a**. Der Phenylring steht nahezu senkrecht zur Ebene des Heterocyclus (86.5°).

Die Kristallstrukturanalyse von 3c zeigt (Abb. 3), daß der Heterocyclus 2c durch metallinduzierte Wanderung eines Wasserstoffatoms an das Atom B5 sich zum komplexierten 4-Boryl-1-borabutadien geöffnet hat. Der Ligand ist nur mit den Atomen B1, C2, C3 und C4 an das Co-Atom koordiniert, das über der Verbindungslinie B1-C4 liegt. H2, H3 und H4 befinden sich auf der dem Co-Atom zugewandten Seite der Ebene durch die Atome B1, C2, C3 und C4, während B5 und N1 auf der dem Cobalt abgewandten Seite liegen. Die Ebene des C5H5-Rings und des Heterobutadiens bilden einen Winkel von 12.5°. Die kurze C4-B5-Bindung deutet eine partielle Ausdehnung des π -Systems des Heterobutadiens auf B5 an, was die beobachtete Fluktuation des Moleküls offenbar erleichtert. Im Festzustand wird keine Wechselwirkung von B5 mit dem Co-Atom gefunden (Co1-B5 2.66 Å). Durch eine geringe Drehung der

Boryl-Gruppen um C3-C4 bzw. um C2-C3 kann allerdings ein Wechsel in der Koordination des Co-Atoms von B1 zu B5 eintreten, bei der der in Lösung beobachtete Platzwechsel des Wasserstoffatoms H5 von B5 an B1 erfolgt.

Wir danken der Deutschen Forschungsgemeinschaft (SFB 247), dem Fonds der Chemischen Industrie und der BASF-Aktiengesellschaft für die Förderung dieser Arbeit.

Experimenteller Teil

NMR: Bruker AC-200 (¹H, ¹¹B, ¹³C), Jeol FX-90Q (¹¹B); Standards für ¹H, ¹³C: Lösungsmittelrestsignale auf TMS umgerechnet, ¹¹B: BF₃-Ether (ext.). – MS: Varian MAT CH7, hochaufgelöstes MS: Finnigan MAT 8230. – Alle Versuche wurden unter Ausschluß von Feuchtigkeit und Sauerstoff unter Argon durchgeführt. – Schmelzpunkte sind unkorrigiert.

(Z)-1,3-Bis[bis(diisopropylamino)boryl]propen (4a): Zu ca. 0.1 mol 1,3-Dilithiopropen in 200 ml Hexan [hergestellt aus 80 ml nBuLi-Lösung, 23.2 g (0.20 mol) TMEDA und 4.2 g (0.10 mol) Propen] werden bei Raumtemp. 48.2 g (0.20 mol) ClB(NiPr₂)₂ gegeben. Dabei erwärmt sich das Reaktionsgemisch bis zum Sieden. Nach 5stdg. Erhitzen unter Rückfluß werden alle bis 100°C/10⁻⁵ bar flüchtigen Verbindungen abkondensiert. Der Rückstand wird in Hexan aufgenommen, LiCl abgetrennt, Hexan i. Vak. entfernt und 4a bei 160° C/5 · 10^{-6} bar destilliert. Ausb. 19 g (41%), hellgelbes Öl. – ¹H-NMR (200 MHz, C₆D₆): $\delta = 6.42$ (dt, ³J_{HH} = 16.0, ${}^{3}J_{\text{HH}} = 8.1 \text{ Hz}, 1 \text{ H}, \text{ CCHC}), 6.08 \text{ (d, } {}^{3}J_{\text{HH}} = 16.2 \text{ Hz}, 1 \text{ H}, \text{ BCH}),$ 3.64 (sept, 4H, NCH), 3.59 (sept, 4H, NCH), 2.31 (d, ${}^{3}J_{HH} = 8.1$ Hz, 2H, CH₂), 1.29 (d, 24H, CH₃), 1.23 (d, 24H, CH₃). - ¹³C-NMR (50 MHz, C_6D_6): $\delta = 146.9$ (CCHC), 135 (br., BCH), 47.0 (NCH), 46.9 (NCH), 33 (br., CH₂), 25.2 (CH₃), 24.4 (CH₃). - ¹¹B-NMR (29 MHz, C_6D_6): $\delta = 37. - EI-MS$, m/z (%): 462 (5) [M⁺], 447 (1) $[M^+ - Me]$, 419 (13) $[M^+ - iPr]$, 211 (100) $[B(NiPr_2)_2^+]$, 43 (12) $[iPr^+]$. - $C_{27}H_{60}B_2N_4$ (462.4): ber. C 70.13, H 13.08; gef. C 70.15, H 13.33.

(*Z*)-1,3-Bis[bis(diisopropylaminoboryl)-3-phenyl-1-propen (4b): Darstellung analog zu 4a ausgehend von 11.8 g (0.10 mol) Allylbenzol; Filtrieren, Destillation bei 180°C/5 · 10⁻⁶ bar; Ausb. 28.5 g (53%), hellgelbes Öl. – ¹H-NMR (200 MHz, C₆D₆): δ = 7.3–7.1 (m, 5H, H_{ar}), 6.08 (d, 1H, BCH), 6.42 (dd, 1H, CCHC), 3.68 (sept, 4H, NCH), 3.56 (d, 1H, CHPh), 3.45 (sept, 4H, NCH), 1.19 (d, 24H, CH₃), 1.12 (d, 24H, CH₃). – ¹³C-NMR (50 MHz, C₆D₆): δ = 148.4 (CCHC), 146.2, 128.3, 127.6, 124.1 (C_{ar}), 137 (br., BCH), 47.7 (NCH), 46.8 (NCH), 46 (br., CHPh), 25.3 (CH₃), 24.7 (CH₃), 24.4 (CH₃), 24.2 (CH₃). – ¹¹B-NMR (29 MHz, Hexan): δ = 37. – EI-MS, *m*/z (%): 538 (1) [M⁺], 523 (1) [M⁺ – Me], 495 (1) [M⁺ – iPr], 211 (100) [B(NiPr₂)²], 43 (58) [iPr⁺].

(*Z*)-1,3-Bis[chlor(diisopropylamino)boryl]propen (**5a**): Zur Lösung von 12.2 g (26.4 mmol) **4a** in 150 ml Et₂O werden bei -78° C 109 mmol HCl in Et₂O gegeben. Nach Erwärmen auf Raumtemp. wird 1 h unter Rückfluß erhitzt, ausgefallenes Diisopropylaminhydrochlorid abgetrennt, das Filtrat eingeengt und **5a** bei 90°C/5 · 10⁻⁶ bar destilliert, Ausb. 7.3 g (83%) farbloses Öl. – ¹H-NMR (200 MHz, CDCl₃): δ = 7.18 (dt, ³J_{HH} = 13.2, ³J_{HH} = 7.1 Hz, 1 H, CCHC), 6.20 (d, ³J_{HH} = 13.0 Hz, 1 H, BCH), 4.11 (m, 1 H, NCH), 3.48 (m, 3 H, NCH), 2.27 (d, ³J_{HH} = 7.2 Hz, br., 2 H, CH₂), 1.1 (m, 18 H, CH₃), 0.91 (d, 6 H, CH₃). – ¹³C-NMR (50 MHz, CDCl₃): δ = 149.6 (CCHC), 129 (br., BCH), 48.7 (NCH), 47.8 (NCH), 47.3 (NCH), 32.2 (NCH), 32 (br., CH₂), 23.9 (CH₃), 23.1 (CH₃), 22.4 (CH₃), 22.3 (CH₃). – ¹¹B-NMR (29 MHz, CDCl₃): δ = 37. – EI-MS, *m/z* (%): 332 (6) [M⁺], 317 (71) [M⁺ – Me], 43 (100) $[\mathit{i}Pr^+].-C_{15}H_{32}B_2Cl_2N_2$ (333.0): ber. C 54.11, H 9.68; gef. C 54.20, H 9.88.

(*Z*)-1,3-Bis[chlor(diisopropylamino)boryl]-3-phenyl-1-propen (**5b**): Darstellung analog zu **5a** aus 20.0 g (37 mmol) **4b** und 148 mmol HCI; Destillation bei 140°C/5 \cdot 10⁻⁶ bar; Ausb. 12.7 g (84%). – ¹H-NMR (200 MHz, CDCl₃): δ = 7.4–7.1 (m, 5H, H_{ar}), 6.87 (dd, ³J_{HH} = 9.5, ³J_{HH} = 15.8 Hz, 1H, CCHC), 6.30 (d, ³J_{HH} = 15.8 Hz, 1H, BCH), 3.97 (sept, 2H, NCH), 3.4 (m, 2H, NCH), 2.53 (d, ³J_{HH} = 9.5 Hz, 1H, CHPh), 1.37 (d, 6H, CH₃), 1.35 (d, 6H, CH₃), 0.95 (d, 6H, CH₃), 0.93 (d, 6H, CH₃). – ¹³C-NMR (50 MHz, CDCl₃): δ = 138.7 (CCHC), 132 (br., BCH), 128.3, 127.5, 126.9, 125.7, 125.1 (C_{ar}), 50.3 (NCH), 46.0 (NCH), 36 (br., CHPh), 23.3 (CH₃), 23.0 (CH₃), 21.3 (CH₃), 21.1 (CH₃). – ¹¹B-NMR (29 MHz, CDCl₃): δ = 39. – EI-MS, *m*/*z* (%): 408 (22) [M⁺], 393 (25) [M⁺ – Me], 304 (60) [M⁺ – C₈H₈], 212 (100) [HB(N*i*Pr₂)²], 43 (99) [*i*Pr⁺]. – C₂₁H₃₆B₂Cl₂N₂ (409.1): ber. C 61.66, H 8.87; gef. C 61.92, H 8.94.

1,2-Bis(diisopropylamino)-2,5-dihydro-1H-1,2-diborol (2c): Zu einer Suspension aus 1.38 g (60 mmol) Natrium in 150 ml Toluol werden in der Siedehitze 10 g (30 mmol) 5a gegeben, und es wird 3 h unter Rückfluß erhitzt. Nach Filtrieren und Entfernen des Toluols i. Vak. ergibt die Destillation des Rückstandes bei 80°C/10⁻⁵ bar 2c als farbloses Öl, das aus Hexan kristallisiert, Ausb. 5.2 g (67%), Schmp. 49–51°C. – ¹H-NMR (200 MHz, CDCl₃): δ = 7.01 $(dt, {}^{3}J_{HH} = 9.3, {}^{3}J_{HH} = 2.9 \text{ Hz}, 1 \text{ H}, \text{ CCHC}), 6.59 (dt, {}^{3}J_{HH} =$ 9.3, ${}^{4}J_{HH} = 1.8$ Hz, 1 H, BCH), 3.85 (sept, 1 H, NCH), 3.76 (sept, 1H, NCH), 3.34 (sept, 1H, NCH), 3.30 (sept, 1H, NCH), 1.79 (dd, ${}^{3}J_{\rm HH} = 2.9, {}^{4}J_{\rm HH} = 1.8$ Hz, 2H, CH₂), 1.26 (d, 6H, CH₃), 1.23 (d, 6H, CH₃), 1.15 (d, 6H, CH₃), 1.12 (d, 6H, CH₃). - ¹³C-NMR (50 MHz, CDCl₃): CH₂-Signal überlagert. $\delta = 155.3 (=CH-C)$, 143 (br., BCH), 56.4 (NCH), 56.1 (NCH), 45.1 (NCH), 45.0 (NCH), 25.4 (CH₃), 25.0 (CH₃), 22.4 (CH₃), 22.3 (CH₃). - ¹¹B-NMR (29 MHz, C_6D_6): $\delta = 52. - EI-MS$, m/z (%): 262 (34) [M⁺], 247 (100) $[M^+ - Me]$, 219 (18) $[M^+ - iPr]$, 162 (17) $[M^+ - NiPr_2]$, 43 (47) $[iPr^+]$, 41 (19) $[BC_2H_6^+]$.

1,3-Bis(diisopropylamino)-2,3-dihydro-1H-1,3-diborol (**6a**): Zur Suspension von 2.41 g (60 mmol) Kalium in 150 ml siedendem Hexan werden langsam 10 g (30 mmol) **5a** in Hexan gegeben. Nach Abtrennung von KCl und Entfernen des Hexans i.Vak. wird der Rückstand bei 5 · 10⁻⁶ bar sublimiert. Kristallisation aus Hexan ergibt 2.7 g (34%) farbloses **6a**, Schmp. 128°C. – ¹H-NMR (200 MHz, C₆D₆): δ = 7.70 (s, 2H, =CH), 3.90 (sept, 2H, NCH), 3.39 (sept, 2H, NCH), 1.25 (d, 12H, CH₃), 1.18 (d, 12H, CH₃), 0.35 (s, 2H, CH₂). – ¹³C-NMR (50 MHz, C₆D₆): δ = 161 (br., =CH), 56.6 (NCH), 46.0 (NCH), 25.1 (CH₃), 22.3 (CH₃), 8 (br., CH₂). – ¹¹B-NMR (29 MHz, C₆D₆): δ = 46. – EI-MS, *m/z* (%): 262 (18) [M⁺], 247 (100) [M⁺ – Me], 43 (23) [*i*Pr⁺]. – C₁₅H₃₂B₂N₂ (262.1): ber. C 68.75, H 12.31, N 10.69; gef. C 66.78, H 12.57, N 10.36.

1,2-Bis(diisopropylamino)-3-phenyl-2,5-dihydro-1H-1,2-diborol (2d): Analog zu 2c aus 1.12 g (50 mmol) Natrium und 10.0 g (24.5 mmol) 5b; Filtrieren, Destillation bei 70°C/5 · 10⁻⁶ bar, Kristallisation aus Hexan liefert 5.9 g (71%) farbloses 2d, Schmp. 59–63°C. – ¹H-NMR (200 MHz, CDCl₃): δ = 7.3–7.2 (m, 5H, H_{ar}), 7.08 (dd, ³J_{HH} = 9.2, ³J_{HH} = 3.6 Hz, 1H, CCHC), 6.80 (d, ³J_{HH} = 9.2 Hz, 1 H, BCH), 3.80 (sept, 1 H, NCH), 3.37 (sept, 1 H, NCH), 3.42 (d, ³J_{HH} = 3.6 Hz, 1 H, CH₃), 1.32 (d, 3H, CH₃), 1.29 (d, 3H, CH₃), 1.17 (d, 3H, CH₃), 1.14 (d, 3H, CH₃), 1.11 (d, 3H, CH₃), 1.07 (d, 3H, CH₃), 1.06 (d, 3H, CH₃), - ¹³C-NMR (50 MHz, CDCl₃): δ = 158.2 (CCHC), 147.1, 128.9, 127.8, 123.9 (C_{ar}), 144 (br., BCH), 57.7 (NCH), 56.1 (NCH), 45.5 (NCH), 45.0 (NCH), 45 (br., CHPh), 25.9 (CH₃), 25.3 (CH₃), 25.2 (CH₃), 24.4 (CH₃),

	2c	2d	<u>3c</u>	6a	6b
Formel	C ₁₅ H ₃₂ B ₂ N ₂	$C_{21}H_{36}B_2N_2$	C ₂₀ H ₃₇ B ₂ N ₂ Co	C ₁₅ H ₃₂ B ₂ N ₂	C ₂₁ H ₃₆ B ₂ N ₂
Molmasse	262.0	338.2	386.2	262.0	338.2
Kristallsystem	monoklin	monoklin	rhombisch	monoklin	rhombisch
Raumgruppe	P21/c	P21/n	Pbca	P21/a	P212121
a [Å]	8.491(6)	10.403(6)	7.682(7)	12.051(7)	7.407(2)
b [Å]	10.053(7)	17.933(10)	17.487(17)	10.460(6)	10.181(4)
c [Å]	21.520(15)	12.519(8)	33.62(3)	14.309(8)	28.780(7)
β [°]	101.34(6)	106.34(4)		90.34(5)	
Zellvolumen [Å ³]	1801	2241	4516	1804	2170
Z	4	4	8	4	4
d [gcm ⁻³]	0.97	1.00	1.14	0.97	1.04
μ [cm ⁻¹]	0.5	0.6	7.6	0.5	0.6
Kristallgröße [mm]	0.3x0.4x0.4	0.4x0.4x0.7	0.2x0.4x0.7	0.3x0.5x0.8	0.3x0.4x0.6
Transmissionsber.	0.90-1.00	-	0.73-0.80	-	-
2@max [°]	45	47	50	46	50
Reflexe					
gemessen	2344	3069	3952	2512	2224
beobachtet (I> $2\sigma_I$)	1385	2024	1918	1498	2112
hkl-Bereich	±9,10,23	±11,17,14	9,20,39	±13,11,15	8,12,34
Verfeinerung					
anisotrop	C, B, N	C, B, N	Co, C, B, N	C, B, N	C, B, N
isotrop	н	н	н	н	н
Zahl der Parameter	212	251	261	240	251
R	0.060	0.050	0.064	0.062	0.050
R _w	0.173	0.146	0.157	0.200	0.143
Δρ[eÅ-3]	-0.13, 0.17	-0.14, 0.13	-0.25, 0.30	-0.14, 0.16	-0.23, 0.25

Tab. 1. Einzelheiten zu den Kristallstrukturanalysen

22.7 (CH₃), 22.1 (CH₃), 21.9 (CH₃), 21.5 (CH₃). $-^{11}$ B-NMR (62 MHz, CDCl₃): $\delta = 51. -$ EI-MS, *m/z* (%): 338 (23) [M⁺], 323 (100) [M⁺ - Me]; Hochaufgelöstes EI-MS: *m/z* ber. 338.3072, gef. 338.3090. - C₂₁H₃₆B₂N₂ (338.2): ber. C 74.59, H 10.71, N 8.28; gef. C 74.23, H 11.04, N 8.19.

1,3-Bis(diisopropylamino)-2,3-dihydro-2-phenyl-1H-1,3-diborol (**6b**): Darstellung analog zu **6a** aus 1.95 g (49 mmol) Kalium und 10.0 g (24.5 mmol) **5b**; Filtrieren, Destillation bei 70°C/5 · 10⁻⁶ bar, Kristallisation aus Hexan; Ausb. 3.1 g (37%). – ¹H-NMR (200 MHz, CDCl₃): δ = 7.1–6.8 (m, 5 H, H_{ar}), 7.68 (s, 2 H, =CH), 3.93 (sept, 2 H, NCH), 3.11 (sept, 2 H, NCH), 1.79 (s, 1 H, B₂CH), 1.28 (d, 6 H, CH₃), 1.24 (d, 6 H, CH₃), 1.06 (d, 6 H, CH₃), 0.39 (d, 6 H, CH₃). – ¹³C-NMR (50 MHz, CDCl₃): δ = 163 (br., =CH), 149.1, 128.2, 127.7, 121.7 (C_{ar}), 50.9 (NCH), 44.4 (NCH), 30 (br., B₂CH), 25.7 (CH₃), 21.7 (CH₃), 20.8 (CH₃), 1.2 (CH₃). – ¹¹B-NMR (29 MHz, Hexan): δ = 43. – EI-MS, *m*/z (%): 338 (31) [M⁺], 323 (100) [M⁺ – Me], 43 (34) [*i*Pr⁺].

 $(\eta^{5}$ -Cyclopentadienyl) { η^{4} -1-(diisopropylamino)-4-[(diisopropylamino)hydroboryl]-1-borabutadien}cobalt (3c): Zur Lösung von 390 mg (1.56 mmol) (C₅H₅)Co(C₂H₄)₂ in 50 ml Hexan werden bei 0°C 400 mg (1.52 mmol) 2c gegeben. Nach Erwärmen auf Raumtemp. wird 15 h gerührt, danach das Reaktionsgemisch eingeengt und bei -78°C an desaktiviertem Aluminiumoxid (5% Wasser) mit Hexan chromatographiert. Rotes 3c wird bei 120°C/10⁻⁶ bar sublimiert, Schmp. 92°C, Ausb. 460 mg (79%). - ¹H-NMR (200 MHz, C₆D₆): BH-Signal überlagert. $\delta = 6.17$ (t, ${}^{3}J_{HH} = 7.6$ Hz, 1H, CCHC), 4.71 (s, 5H, C₅H₅), 3.60 (sept, 4H, NCH), 3.05 (dd, ${}^{3}J_{HH} = 7.6$, ${}^{3}J_{HH} = 3.0$ Hz, 2H, BCH), 1.12 (d, 24H, CH₃). -

Chem. Ber. 1994, 127, 1363-1368

¹H-NMR (200 MHz, 200 K, C_7D_8): $\delta = 6.08$ (t, 1 H, CCHC), 4.61 (s, 5H, C_5H_5), 3.51 (sept, 4H, NCH), 2.99 (dd, kleine Kopplung nicht aufgelöst, 2H, BCH), 1.03 (d, 24 H, CH₃). – ¹³C-NMR (50 MHz, C_6D_6): Bor-Kohlenstoff-Signale nicht beobachtet. $\delta = 100.7$ (CCHC), 80.3 (C_5H_5), 47.9 (NCH), 24.5 (CH₃), 23.3 (CH₃). – ¹¹B-NMR (29 MHz, C_6D_6): $\delta = 38. - \text{EI-MS}$, *m/z* (%): 386 (64) [M⁺], 343 (100) [M⁺ - iPr], 43 (43) [*i*Pr⁺]; Hochaufgelöstes EI-MS, *m/z*: ber. 386.2482, gef. 386.2476. – $C_{20}H_{37}B_2CoN_2$ (386.2): ber. C 62.22, H 9.66, N 7.26; gef. C 61.55, H 9.56, N 7.02.

 $(\eta^{5}$ -Cyclopentadienyl) { η^{4} -1-(diisopropylamino)-4-[(diisopropylamino)hydroboryl]-2-phenyl-1-borabutadien}cobalt (3d): Darstellung analog zu 3c aus 290 mg (1.16 mmol) (C₅H₅)Co(C₂H₄)₂ und 390 mg (1.16 mmol) 2d, Ausb. 340 mg (64%). – ¹H-NMR (200 MHz, C₆D₆, 298 K): BH-Signal nicht beobachtet. δ = 7.3 (m, 5H, H_{ar}), 6.35 (d, ³J_{HH} = 7.5 Hz, 1H, CCHC), 4.72 (s, 5H, C₅H₅), 3.96 (sept, 2H, NCH), 3.40 (sept, 2H, NCH), 3.15 (dd, ³J_{IHI} = 7.5, ³J_{HH} = 6.3 Hz, 2H, BCH), 1.2 (mehrere d, nicht aufgelöst, CH₃). – ¹¹B-NMR (64 MHz, C₇D₈, 298 K): δ = 55 (1 B), 32 (1 B). – ¹¹B-NMR (64 MHz, C₇D₈, 373 K): δ = 39. – EI-MS, *m*/*z* (%): 462 (23) [M⁺], 419 (47) [M⁺ – *i*Pr], 338 (25) [Lig⁺], 323 (90) [Lig – Me⁺], 189 (100) [Cp₂Co⁺], 43 (68) [*i*Pr⁺].

Kristallstrukturanalysen^[9]: Kristalldaten und Einzelheiten zu den Strukturbestimmungen sind in Tab. 1 zusammengefaßt. Die Intensitäten wurden für **2c**, **2d**, **3c** und **6a** mit einem Siemens-Stoe-Vierkreisdiffraktometer (Mo- K_a -Strahlung, ω -Scan) bei Raumtemperatur, für **6b** mit einem Syntex-R3-Vierkreisdiffraktometer (Mo- K_a -Strahlung, ω -Scan) bei -105° C gemessen. Die Struturen wurden mit direkten Methoden gelöst und mit allen gemessenen Reflexen

gegen F^2 verfeinert^[10] (Nichtwasserstoffatome anisotrop). Die direkt an den Heterocyclus gebundenen Wasserstoffatome wurden in gefundenen Lagen isotrop verfeinert. Die Wasserstoffatome der Methylgruppen wurden als Teil einer starren Gruppe behandelt, die übrigen Wasserstoffatome wurden in berechneten Lagen eingegeben. Für diese wie auch die der Methylgruppen wurden gruppenweise gemeinsame isotrope Temperaturfaktoren verfeinert. In 2c und 6a ist der Heterocyclus fehlgeordnet. Alle Berechnungen wurden mit den Programmen SHELXS86 und SHELXL93^[10] durchgeführt.

* Herrn Prof. Dr. Joachim Knappe zum 65. Geburtstag gewidmet. ^[1] J. D. Odon in Comprehensive Organometallic Chemistry (Hrsg.: G. Wilkinson, F. G. A. Stone, E. W. Abel), Pergamon Press, Oxford, 1982, Bd. 1, S. 253 und 272; T. Onak, Organoborane Chemistry, Academic Press, New York, 1975.
G. E. Herberich, B. Heßner, M. Hostalek, Angew. Chem. 1986, 98, 637-638; Angew. Chem. Int. Ed. Engl. 1986, 25, 642-643.

- ^[3] G. E. Herberich, C. Ganter, L. Wesemann, R. Boese, Angew. Chem. 1990, 102, 914-915; Angew. Chem. Int. Ed. Engl. 1990, 29, 912.
- [4] G. Gabbert, W. Weinmann, H. Pritzkow, W. Siebert, Angew. Chem. **1992**, 104, 1670–1672; Angew. Chem. Int. Ed. Engl. **1992**, 31, 1603.
- ^[5] J. Klein, A. Medlik-Balan, J. Chem. Soc., Chem. Commun. 1975, 877.
- [6] G. Knörzer, W. Siebert, Z. Naturforsch., Teil B, 1990, 45, 15.
- M. Hildenbrand, H. Pritzkow, S. Siebert, Angew. Chem. 1985, 97, 769-770; Angew. Chem. Int. Ed. Engl. 1985, 24, 759-760. J. S. Binkley, J. A. Pople, W. J. Hehre, J. Am. Chem. Soc. 1980, [7]
- [8] 102, 939-947.
- [9] Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummern CSD-400663 (2c), 400664 (2d), 400665 (3c), 400666 (6a), 400667 (6b) angefordert werden.
- ^[10] G. M. Sheldrick, SHELXS86, Univ. Göttingen, 1986; SHELXL93, Univ. Göttingen, 1993.

[57/94]